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About APACMed

The Asia Pacific Medical Technology Association (APACMed)
represents manufacturers and suppliers of medical
equipment, devices and in-vitro diagnostics, industry
associations and other key stakeholders associated with
the medical technology industry in Asia Pacific.

WHO WE ARE

V As a trade association, our mission is to improve the

standards of care for patients through innovative
collaborationsamong stakeholders to jointly shape the
future of healthcare in Asia Pacific.

OUR OBJECTIVE

Build and support a strong regulatory workforce
for MedTech industry and regulators and drive
capacity building initiatives in partnership with
various stakeholders.




About AP/

Corporate FUNCTIONAL COMMITTEES
60 members

member

companies Startups

HEADQUARTERS: SINGAPORE
COUNTRY OFFICES: INDIA & CHINA
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Speaker Introduction

Andrew Wu

Rook Quality Systems
VP of Medical Software, GM of APAC Headquarter

= 12+ years of experience in the medical device and diagnostic
industry, with expertise in technical development, quality and
regulatory strategy in the SaMD space.

= Extensive experience managing verificationand validation
testing and strategy for medical device standalone and
embedded software.

= Well-versedin navigating international medical device markets,
ensuring adherence to international regulatory standards.




Challenges for Regulating AI/ML Solutions

» Additional considerations for managing data pipeline and ML operations (on top of the SDLC
process)

* Generalizabilityacross populations and different real-world conditions
* Security considerations across data, model, and operating system

 Change management is necessary to maintain the performance of AI/ML devices
e Combat concept drift and deploy proper monitoring and maintenance schema

* Trustworthiness of AI/ML devices

» Achieve better interpretability and explainability by end user through validation, model labeling, product
labeling
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Key Considerations for Conducting ML @
Training and Validation

Clinical Evaluation

Valid Clinical Association Analytical Validation Clinical Validation

. . .. Does use of your SaMD’s accurate
Is there a valid clinical association y ’

Does your SaMD correctly process reliable and precise output data
between your SaMD output and : : , .
, .. input data to generate accurate, achieve your intended purpose in
your SaMD'’s targeted clinical . . o
reliable and precise output data? your target population in the

condition? o
context of clinical care?

* Relevance of available data to the clinical problem and current clinical practice;

» Dataacquiredin a consistent, clinicallyrelevant and generalizable manner that aligns with the SaMD’s
intended use and modification plans;

» Appropriate separation between training, tuning, and test datasets; and

» Appropriate level of transparency (clarity) of the output and the algorithm aimed at users.

Reference: US FDA Al and ML Discussion Paper


https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf

Best Practices for Developing Al/ML

Solutions

APAC/\\ed

A Decade of Progress

e Characterize device modifications (e.g.,
performance improvement)

* Method to develop, validate, and
implement the changes

* Impact assessment to describe
the risks and benefits and risk
mitigations

* Labeling update

Change Data Pipeline

Management

Management

 IMDRF SaMD WG

- 1SO 13485

* Good Machine Learning
Practices guiding principles

 IEC 62304 and IEC 82304

- 1EC 34971

- EUAIAct

 ISO/IEC)JTC 1/SC 42

Harmonizing
Regulatory
Requirements

Security
Considerations

Dataset splitting

Representative (e.g., informed by
clinical participants or deployed
model performance)

Manage the Risks of degradation,
overfitting, unintended bias

~

)

System-oriented attack
Data-oriented attack
Model-oriented attack

\




Good Machine Learning Practice (GMLP)

Guiding Principles

/ GOOD MACHINE LEARNING PRACTICES \

Jointly identified by the FDA, Health Canada,
MHRA "

Data for re-training

Data selection and
Model training and tuning 2

management
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* Good software engineering and security e o Excelence | &
pl“actices « Clinical evaluation a /
i Dataset management (e'g" data Spllt’ Premarket Assurance of Safety Review of SaMD Pre-Specifications
gl"ound truthing, generalizability"_etc) and Effectiveness and Algorithm Change Protocol

Model monitoring

* Usability considerations (e.g.,

New (Live) Data Deployed Model

interpretability and explainability through e —

validation, model labeling, product s

lab e1ing un -etC) L_ege_nd Pe':faonnarrice
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* Model monitoring and remediation (e.g., ("W“‘”PLCAPPM")
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= - - q Al Production Model Al Device Modifications
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A Decade of Progress

Localized Regulation/Guidance APAC/\\ed

JURISDICTION TITLE CATEGORY
US FDA, Health Canada, | Good Machine Learning Practice for Medical Device Development: Guiding General - Medical Device
MHRA Principles
US FDA Marketing Submission Recommendations for a Predetermined Change Change Management
Control Plan for Artificial Intelligence/Machine Learning (Al/ML)-Enabled
Devi ftware Function
Japan PMDA Regulatory Science on Al-based Medical Devices and Systems General - Medical Device
Singapore HSA Regulatory Guidelines for Software as Medical Device: A Life Cycle Approach | General - Medical Device

(special section for Al

China NMPA Review key points of Aided Decision-making Medical Device Software Using | General - Medical Device
Deep Learning Techniques

South Korea MFDS A guideline for Approval/Evaluation of Medical Device with Big Data and Al General - Medical Device

Technology
EU General Data Protection Regulation (GDPR) Data Privacy
EU EU Al Act General

EU Cybersecurity Act Security



https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
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